4 research outputs found

    Biogenic gas nanostructures as ultrasonic molecular reporters.

    Get PDF
    Ultrasound is among the most widely used non-invasive imaging modalities in biomedicine, but plays a surprisingly small role in molecular imaging due to a lack of suitable molecular reporters on the nanoscale. Here, we introduce a new class of reporters for ultrasound based on genetically encoded gas nanostructures from microorganisms, including bacteria and archaea. Gas vesicles are gas-filled protein-shelled compartments with typical widths of 45-250 nm and lengths of 100-600 nm that exclude water and are permeable to gas. We show that gas vesicles produce stable ultrasound contrast that is readily detected in vitro and in vivo, that their genetically encoded physical properties enable multiple modes of imaging, and that contrast enhancement through aggregation permits their use as molecular biosensors

    Biogenic gas nanostructures as ultrasonic molecular reporters

    Get PDF
    Ultrasound is among the most widely used non-invasive imaging modalities in biomedicine, but plays a surprisingly small role in molecular imaging due to a lack of suitable molecular reporters on the nanoscale. Here, we introduce a new class of reporters for ultrasound based on genetically encoded gas nanostructures from microorganisms, including bacteria and archaea. Gas vesicles are gas-filled protein-shelled compartments with typical widths of 45–250 nm and lengths of 100–600 nm that exclude water and are permeable to gas. We show that gas vesicles produce stable ultrasound contrast that is readily detected in vitro and in vivo, that their genetically encoded physical properties enable multiple modes of imaging, and that contrast enhancement through aggregation permits their use as molecular biosensors

    Compressor Tree Synthesis on Commercial High-Performance FPGAs

    No full text
    Compressor trees are a class of circuits that generalizes multioperand addition and the partial product reduction trees of parallel multipliers using carry-save arithmetic. Compressor trees naturally occur in many DSP applications, such as FIR filters, and, in the more general case, their use can be maximized through the application of high-level transformations to arithmetically intensive data flow graphs. Due to the presence of carry-chains, it has long been thought that trees of 2- or 3-input carry-propagate adders are more efficient than compressor trees for FPGA synthesis; however, this is not the case. This article presents a heuristic for FPGA synthesis of compressor trees that outperforms adder trees and exploits carry-chains when possible. The experimental results show that, on average, the use of compressor trees can reduce critical path delay by 33% and 45% respectively, compared to adder trees synthesized on the Xilinx Virtex-5 and Altera Stratix III FPGAs
    corecore